主成分分析(principal components analysis,简称PCA)是一种降维分析,将多个指标转换为少数几个综合指标,由霍特林于1933年首先提出。
主成分分析方法之所以能够降维,本质是因为原始变量之间存在着较强的相关性,如果原始变量之间的相关性较弱,则主成分分析不能起到很好的降维效果,所以进行主成分分析前最好先进行相关性分析。
一个例子
中心城市的综合发展是带动周边地区经济发展的重要动力。因而,分析评价全国35个中心城市的综合发展水平,无论是对城市自身的发展,还是对周边地区的进步,都具有十分重要的意义。
原始数据及指标解释。我们选取了反映城市综合发展水平的12个指标,其中包括8个社会经济指标,分别为:—非农业人口数(万人);—工业总产值(万元);—货运总量(万吨);—批发零售住宿餐饮业从业人数(万人);—地方政府预算内收入(万元);—城乡居民年底储蓄余额(万元);—在岗职工人数(万人);—在岗职工工资总额(万元)。
4个城市公共设施水平的指标:—人均居住面积(平方米);—每万人拥有公共汽车数(辆);—人均拥有铺装道路面积(平方米);—人均公共绿地面积(平方米)。
问题:请使用主成分分析,将这12个指标综合为少出几个综合指标。
总方差解释反映了各个主成分的贡献率及累计贡献率,第三列表示贡献率,第四列表示累计贡献率,可以看到,提取前3个主成分,累计贡献率就可以达到87%以上,即这3个主成分集中了12个原始变量的87%的信息。
(4)成分矩阵(或因子载荷矩阵)
成分矩阵(或因子载荷矩阵)反映了提取的3个主成分与原始变量的相关性,从上面可以得出以下结论:
对主成分进行解释:
综上,通过主成分分析,将反应原始数据的12个指标综合为3个综合指标,分别为:
从而起到了降维的作用。
你是否使用过主成分分析(PCA)呢?欢迎留言评论!