等比数列求和公式(等比数列前n项和公式)

高中数学有一类常见问题:数列{an}为等差数列,数列{bn}为等比数列,令cn=an·bn,要求数列{cn}的前n项和Sn.

通常,老师会讲用错位相减法来做(错位相减法在等比数列求和公式推导时已经学过),过程如下:

等比数列求和公式(等比数列前n项和公式)

等比数列求和公式(等比数列前n项和公式)

而如果用我们现在要讲的解法:

等比数列求和公式(等比数列前n项和公式)

这么简单?!

那这种方法是只适用于这道题目呢,还是对等差乘等比数列求和这类问题都可以用?

我们仔细来看下构造这一步的详细过程。

等比数列求和公式(等比数列前n项和公式)

相信你已经看明白了,只要{an}是等差数列,就一定可以像图中一样用待定系数法进行构造,使cn变成一个新数列{dn}的相邻两项之差。

对于上面这个例题,dn=(n-1)3^n,

n≥2时,cn=dn-d(n-1),

c1=1,c2=d2-d1,c3=d3-d2,……

那对cn求和就相当于裂项相消了:

Sn=c1+c2+c3+……+cn

=1+d2-d1+d3-d2+……+dn-d(n-1)

=1-d1+dn=1-0+(n-1)3^n=(n-1)3^n+1.

为了讲解清晰,我们把运算过程完全展开了,实际上步骤并不复杂。

相比错位相减法,我认为这个方法是有优势的,你掌握了吗?

派优网部分新闻资讯、展示的图片素材等内容均为用户自发上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习交流。用户通过本站上传、发布任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们一经核实,立即删除。并对发布账号进行封禁。
(0)
痞子配酒的头像痞子配酒

相关推荐

返回顶部