导读:“***兔同笼”问题是小学阶段一个重要的奥数问题,本内容原来设置在旧版人教版教材六年级上册《数学广角》里面,新人教版教材将其提前到四年级下册数学教科书的《数学广角》里面,“***兔同笼”问题能够帮助血红色呢个提高问题的分析能力和解决问题的逻辑思维能力。今天,J老师和各位同学一起学习***兔同笼问题,我们用什么方法解决呢?给大家介绍常用的六种方法,看看哪一种方法最适合你。
说起“***兔同笼”就要说起1500年前的《孙子算经》里面的经典题目(传到日本变成了”龟鹤问题“),我们就从这道题目入手,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只***兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只***和兔?
解决“***兔同笼”问题的第一种方法:枚举法(列表法)。
方法很简单过程很复杂,就是根据不断变化***和兔的数量,分别把***和兔子的腿的的数量填入表格中,知道找到正确的答案为止,这种方法只适合与课堂教学中的探索和对其他方法的引导,由于这种方法太过笨拙,用时较多,在日常的练习和考试中一般不适用。所以这种方法大家了解即可。
解决“***兔同笼”问题的第二种方法:假设法(矛盾法)。
这种解决“***兔同笼”问题的主要解决方法之一,该方法主要是根据题目当中的已知条件,对题目进行某种假设,然后按照条件进行推理,找到与题目数量的矛盾之处,最后进行合理的变化从而得出正确的结论。同时呢,假设法也是奥数题目中经常遇到的方法(这里仅对于***兔同笼问题进行讲解,其他问题的假设法这里暂时不再赘述),这种方法关键是——通过假设找到与题目中的数量出现的矛盾之处。
我们首先看题目:有若干只***兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只***和兔?
思考过程:假设笼子里面35只全是兔子的话,那么脚的总数应该是:35×4=140(只),但是实际笼子里只有94只脚,这就与我们假设的出现矛盾了,多出了140-94=46只脚,为什么会多出46只脚呢?因为笼子里不全是兔子还有***,我们把两只脚的***假设成了兔子(现实中一只兔子比一只***多两只脚),由于我们的假设而多出了46只脚,多2条腿就有1只***,那么多出的46只腿当中有多少个2,就有多少只***,我们就用46÷2=23(只),求出了***的数量,再用35-23=12(只)得出兔子的数量。
我们所以算式:***的数量=(35×4-94)÷(4-2)=23(只)
兔子的数量=35-23=12(只)
归纳公式:如果假设全是兔子:(总头数×一只兔子脚的数量-总脚数)÷(一只兔子脚的数量-一只***的脚的数量)
当然,我们还可以假设笼子里全是***,如果全是***,脚的总数是35×2=70(只)脚,与实际少了94-70=24(只)脚,由于一直***比一只兔子少两只脚,每少两只脚就有一只兔子,少24只脚就有:24÷2=12(只)兔子,算出兔子数量,***的数量就是:35-12=23(只)。
列出算式:兔子的数量=(94-35×2)÷(4-2)=12(只)
***的数量=35-12=23(只)
归纳公式:如果假设全是***:(总脚数-总头数×一只***脚的数量)÷(一只兔子脚的数量-一只***的脚的数量)
方法所以:
1、假设兔子求出***,假设***求出兔子。
2、这里不建议学生强记公式,做题的时候根据假设的步骤一步一步的思考最为简单。
解决“***兔同笼”问题的第三种方法:砍腿法
如果把兔子的两条腿去掉,那么兔子就和***一样都是两条腿了,那么现在笼子里脚的数量应该是:35×2=70(只)脚,原来有94只脚,减少了94-70=24(只)脚,一只兔子被砍去2条腿,脚的总数量就减少2只脚,那么减少了24只脚,就是有24÷2=12(只)兔子被砍腿,然后总数减去兔子数量就是***的数量。
列出算式:如果每只兔子去掉2条腿,兔子数量:(94-35×2)÷2=12(只)
***的数量=35-12=23(只)
方法归纳:虽然残忍但是学生容易理解,更容易思考。
解决“***兔同笼”问题的第四种方法:抬腿法(有人说是金***独立法)
抬腿法一:
如果让***抬一只脚(金***独立)和兔子抬两只脚(玉兔抬蹄),这时笼子里的腿的数量就减半,变成94÷2=47(只)脚,现在每***一只脚着地,每兔子两只脚着地,***的数量就是腿的数量,兔子的腿就比兔子的数量多1。
***抬一只脚和兔子抬两只脚
那么现在腿的总数量与头的数量之差47-35=12,就是兔子的数量。然后算出***的数量。
列式所以:
如果***抬一只脚,兔子抬两只脚:兔子数量94÷2-35=12(只);***的数量:35-12=23(只)
所以公式:兔子的只数=总腿数÷2-总只数。
抬腿法二:(和砍腿法异曲同工)
先让兔子和***同时抬两只脚,脚的总数减少35×2=70(只)脚,剩下的脚就全是兔子的了,还剩下94-70=24(只)脚,现在每一只兔子就还两只脚,那么24里面有几个2就有几只兔子,用24÷2=12(只),***:35-12=23(只)。
抬腿二法:***和兔子同时抬起两条腿。
列式所以:
如果***和兔子同时抬起两只脚:兔子的数量:(94-35×2)÷2=12(只);***的数量:35-12=23(只)。
抬腿法的缺点:仅适用于***兔同笼问题。
解决“***兔同笼”问题的第五种方法:列方程法
列方程法的前提是需要学生已经会设未知数,现在人教版的教材把***兔同笼问题提前至四年级,而四年级的学生在五年级上册才会学习到解方程,所以这里仅适合于五六年级的学生使用此方法,四年级之前的学生可以看前面的四种方法。
***脚的总数+兔脚的总数=总脚数
我们可以设兔子的的数量为X只,那么***的数量就是(35-X)只。
4x+2(35-x)=94
4x+70-2x=94
2x+70=94
2x=24
x=12
35-12=23(只)
答:兔子12只,***有23只。
还可以设***为X只,那么兔子就有(35-x)只
不管孩子怎么列方程,解方程时都会出现问题
如果列成:***脚的总数+兔脚的总数=总脚数:
2x+4(35-x)=94
2x+140-4x=94
做到这里很多小学的孩子就不会往下做了,因为合并未知数时出现了2x-4x,小学阶段只学了负数的认识,负数的计算还没有学,所以一时会蒙,但是也不是不能做,只要稍动脑筋就会算出。
方程两边同时减去94变成2x+46-4x=0,方程两边再同时减去4X,变成2X+46=4X,然后同时减去2X,变成2X=46,解出x=23,兔子=35-23=12(只)。
如果列成:兔脚的总数+***脚的总数=总脚数
4×(35-X)+2X=94
4×35-4X+2X=94
做到这里孩子又不会算了。
方法所以:列方程容易思考,便于孩子的理解,注意事项是一定要设兔子的数量为X,便于孩子解方程。
今天我们就对***兔同笼问题分析到这里,一共给孩子提供了五种做法,当然还有其他的做法,这里不再一一讲解,不管什么方法都离不开孩子的理解和练习,所以理解是前提,解题是目的。